Development and realization of Supermirrors for 5-20 keV for high resolution X-ray Imaging plasma diagnostic

Ph. Troussel, H. Maury

CEA/DAM lle de France, Département de Conception et de Réalisation des Expériences, BP 12, 91680 Bruyères-les-Châtel, France

J. Ph. Champeaux

IRSANT Laboratoire collisions d'agrégats et réactivité UMR 5519 Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse

B. Vidal, T.O. Khachroum

L2MP-CNRS UMR 6137 Faculté des Sciences Saint Jérôme, case 131, Av Escadrille Normandie -Niemann 13397 Marseille Cedex 20

ABSTRACT

With regards of the experiments at "Ligne d'Intégration Laser" (LIL) and "Laser Mégajoule" (LMJ) at CESTA near Bordeaux, France, our laboratory is developing advanced High Resolution X-ray Imaging (HRXI) microscopes. These microscopes are dedicated to diagnose laser produced plasma used for <u>Inertial Confinement Fusion (ICF)</u> research.

I present in particular a type of Wolter microscope. It is a section of Wolter composed of three off-axis revolution concave toroïdal mirrors working at grazing incidence. This microscope, the so-called Plasma Imageur X pour les Expériences Laser Megajoules (PIXEL) can be used either for 2D imaging studies using X-ray films, or for 1D time resolved images associated with a streak camera. We have achieved a spatial resolution of 5 μ m in a field of 500 μ m. This device has two advantages compared to a classic Wolter microscope : 1) a high object depth focus (a few millimeters) and 2) the possibility to work in a large magnification range without loss of spatial resolution.

Non-periodic W/Si multilayer mirrors ("Supermirrors") are used to reflect high-energy photons. These multilayer mirrors were developed at the Commissariat à L'Energie Atomique (CEA-DIF) in collaboration with the Laboratoire des Matériaux et de Microélectronique de Provence (L2MP). Super mirrors are designed to work at 0, 6° grazing incidence with a reflectivity above 40 % in almost the entire energy range 5-10 keV. We have also studied other systems of super mirrors in this range. The experimental results show good agreement with theoretical computations from the XR-vision code.

We will present the imaging studies performed with PIXEL and with two kinds of X-ray Sources : an x-ray generator and a picosecond laser interaction in the EQUINOX facility.